2013 Annual Transportation Report
Program and Data Update

UCSB Sustainability
This was the second year that the transportation team served as a Chancellor’s Sustainability Committee Subcommittee on Transportation. Membership included:

Roland Geyer, Co-Chair – Faculty Member, Bren School
Robert Silsbee, Co-Chair – Interim Director, Transportation & Parking Services
Ron Cortez – Associate Vice Chancellor, Administrative Services
Kristen Deshler – Director, Government Relations
Paolo Gardinali – Associate Director, Social Science Survey Center
Steffen Gauglitz – Graduate Student
Bernard Kirtman – Faculty Member, Chemistry & Biochemistry
Mo Lovegreen – Director, Campus Sustainability
Joel Michaelsen – Faculty Member, Geography
Arjun Sarkar – Alternative Fuel Coordinator, Transportation & Parking Services
Scott Spaulding – Santa Barbara County Association of Governments (SBCAG)
Bruce Tiffney – Faculty Member, Earth Science & Dean, College of Creative Studies
James Wagner – Transportation Alternative Program Manager (TAP), Transportation & Parking Services
INTRODUCTION

The University of California, Santa Barbara (UCSB) Chancellor’s Sustainability Committee Subcommittee on Transportation has been charged to develop strategies that reduce fuel use, air pollution, and carbon dioxide emissions while providing opportunities for alternative transportation, including bicycle and pedestrian infrastructure.

MISSION

To reduce both consumption of natural resources and production of greenhouse gases as related to transportation, using appropriate technological, management, and behavioral solutions.

POLICY/REPORTING

Data is collected on the mode of transportation to campus (mode split) by faculty, staff and students. The central statistic is the Average Vehicle Ridership (AVR) of commuters, defined as the number of trips to campus divided by the number of automobiles used for those trips on an annual basis. This data permits the campus to set goals for the reduction of fuel consumption. Estimated fuel consumption is reported by Transportation & Parking Services to the Office of the President for faculty, staff, and students. The U.S. Environmental Protection Agency (EPA) consumes fuel consumption data to report the fuel consumption is reported by the campus community’s contributions to global warming through alternative commuting options for UC Santa Barbara faculty, staff, and students.

Fleet Services division became recognized as a Model Pollution Prevention Vehicle Service and Repair Facility by the California EPA.

Provided access to the Carpool Match Service twenty-four hours per day.

Subsidized MTD bus passes - unlimited access for all students.

Subsidized regional transit bus program for faculty and staff.

Subsidized van pools and carpools.

Provided access to In-Vehicle Parking Meter Technology, tailored to allow the use and accumulation of 57 courtesy hours of parking per quarter.

Provided automatic enrollment in the “Emergency Ride Home Program.”

Provided access to bike lockers.

Provided those who commute by foot, skateboard, scooter, bus, vanpool, or carpool with six courtesy days of parking per quarter for students living farther than two miles away from campus and that commute to campus by bike.

Car share program – free sign-up and waiver of annual fees for all members of TAP.

Formalized a bicycle path/parking improvements policy that went into effect as an interim policy on 7/1/11, and was approved as a formal policy on 7/1/12

Established a skateboard lane.

Established 7 miles of class 1 bike paths with 7 bicycle roundabouts and 3 bicycle underpasses.

Established a bike repair shop on campus.

Established a Transportation Alternatives Program (TAP) to conserve energy, reduce campus parking demand, ease traffic congestion, reduce air pollution, and reduce the campus community’s contributions to global warming through alternative commuting options for UC Santa Barbara faculty, staff, and students.

Provided pre-tax payroll deductions for vanpool subscriptions, regional bus passes, local bus passes, and carpool permits.

To reduce both consumption of natural resources and production of greenhouse gases as related to transportation, using appropriate technological, management, and behavioral solutions.

Established 6 bike repair stations with air pumps plus and additional 7 bicycle air pumps.

2-mile radius long-term parking permit sales ban for those undergraduates that live within 2-miles of campus that do not live in university housing.

Established a Transportation Alternatives Program (TAP) to conserve energy, reduce campus parking demand, ease traffic congestion, reduce air pollution, and reduce the campus community’s contributions to global warming through alternative commuting options for UC Santa Barbara faculty, staff, and students.

Subsidized van pools and carpools.

Provided access to In-Vehicle Parking Meter Technology, tailored to allow the use and accumulation of 57 courtesy hours of parking per quarter.

Provided automatic enrollment in the “Emergency Ride Home Program.”

Provided access to bike lockers.

Provided those who commute by foot, skateboard, scooter, bus, vanpool, or carpool with six courtesy days of parking per quarter for students living farther than two miles away from campus and that commute to campus by bike.

Car share program – free sign-up and waiver of annual fees for all members of TAP.

Formalized a bicycle path/parking improvements policy that went into effect as an interim policy on 7/1/11, and was approved as a formal policy on 7/1/12

Established a skateboard lane.

Established 7 miles of class 1 bike paths with 7 bicycle roundabouts and 3 bicycle underpasses.

Established a bike repair shop on campus.

MISSION

To reduce both consumption of natural resources and production of greenhouse gases as related to transportation, using appropriate technological, management, and behavioral solutions.

POLICY/REPORTING

Data is collected on the mode of transportation to campus (mode split) by faculty, staff and students. The central statistic is the Average Vehicle Ridership (AVR) of commuters, defined as the number of trips to campus divided by the number of automobiles used for those trips on an annual basis. This data permits the campus to set goals for the reduction of fuel consumption. Estimated fuel consumption is reported by Transportation & Parking Services to the Office of the President for faculty, staff, and students. The U.S. Environmental Protection Agency (EPA) consumes fuel consumption data to report the fuel consumption is reported by the campus community’s contributions to global warming through alternative commuting options for UC Santa Barbara faculty, staff, and students.

Fleet Services division became recognized as a Model Pollution Prevention Vehicle Service and Repair Facility by the California EPA.

Provided access to the Carpool Match Service twenty-four hours per day.

Subsidized MTD bus passes - unlimited access for all students.

Subsidized regional transit bus program for faculty and staff.

Subsidized van pools and carpools.

Provided access to In-Vehicle Parking Meter Technology, tailored to allow the use and accumulation of 57 courtesy hours of parking per quarter.

Provided automatic enrollment in the “Emergency Ride Home Program.”

Provided access to bike lockers.

Provided those who commute by foot, skateboard, scooter, bus, vanpool, or carpool with six courtesy days of parking per quarter for students living farther than two miles away from campus and that commute to campus by bike.

Car share program – free sign-up and waiver of annual fees for all members of TAP.

Formalized a bicycle path/parking improvements policy that went into effect as an interim policy on 7/1/11, and was approved as a formal policy on 7/1/12

Established a skateboard lane.

Established 7 miles of class 1 bike paths with 7 bicycle roundabouts and 3 bicycle underpasses.

Established a bike repair shop on campus.

MISSION

To reduce both consumption of natural resources and production of greenhouse gases as related to transportation, using appropriate technological, management, and behavioral solutions.

POLICY/REPORTING

Data is collected on the mode of transportation to campus (mode split) by faculty, staff and students. The central statistic is the Average Vehicle Ridership (AVR) of commuters, defined as the number of trips to campus divided by the number of automobiles used for those trips on an annual basis. This data permits the campus to set goals for the reduction of fuel consumption. Estimated fuel consumption is reported by Transportation & Parking Services to the Office of the President for both commuters and the campus fleet.

 hunan

Established a skateboard lane.

Established 7 miles of class 1 bike paths with 7 bicycle roundabouts and 3 bicycle underpasses.

Established a bike repair shop on campus.
ACCOMPLISHMENTS FOR 2012/2013

- Student ridership on MTD was increased by 10.7%.

- More than 75% of campus light duty fleet purchases were alternatively fueled and/or ultra efficient vehicles.

- October 2012, received a Santa Barbara County Green Business certification for our garage (first garage in county for this).

- 12 level II Electric Vehicle Charging Stations (220 volt) were installed.

- Three students serve on our Transportation Alternatives Board (TAB).

- Supported the DOE & California Energy Commission regional readiness grant submittals (which were awarded).

- Participated in the Regional Coordinating Council on developing a regional EV plan.

- Participated on the Central Coast Clean Cities Coalition (C-5).

- Received recognition from the Santa Barbara County Air Pollution District and Southern California Edison as a leader in plug-in electric vehicle (PEV) readiness in the Central Coast.
ANNUAL SURVEY AND DATA COLLECTION

Each year, the UCSB Social Science Survey Center completes a survey of the campus to help us assess progress in alternative transportation. Below is the information we gathered in 2013.

UCSB Commuter Mode-Split

<table>
<thead>
<tr>
<th>Faculty/Staff</th>
<th>2008 (18)</th>
<th>2010 (19)</th>
<th>2011 (19)</th>
<th>2012 (19)</th>
<th>2013 (19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Occupant Motor Vehicle</td>
<td>58%</td>
<td>62%</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Carpool/vanpool</td>
<td>20%</td>
<td>18%</td>
<td>19%</td>
<td>20%</td>
<td>19%</td>
</tr>
<tr>
<td>Bus</td>
<td>7%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Bike</td>
<td>10%</td>
<td>11%</td>
<td>11%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Walk</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Skateboard</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Telecommuting</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>3%</td>
</tr>
<tr>
<td>Other</td>
<td>3%</td>
<td>0%</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Total Alternative Transportation</td>
<td>37%</td>
<td>36%</td>
<td>39%</td>
<td>38%</td>
<td>39%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Students</th>
<th>2010 (19)</th>
<th>2011 (19)</th>
<th>2012 (19)</th>
<th>2013 (19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Occupant Motor Vehicle</td>
<td>12%</td>
<td>7%</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Carpool/Vanpool</td>
<td>4%</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>Bus</td>
<td>11%</td>
<td>8%</td>
<td>8%</td>
<td>11%</td>
</tr>
<tr>
<td>Bike</td>
<td>50%</td>
<td>55%</td>
<td>55%</td>
<td>53%</td>
</tr>
<tr>
<td>Walk</td>
<td>18%</td>
<td>20%</td>
<td>17%</td>
<td>19%</td>
</tr>
<tr>
<td>Skateboard</td>
<td>n/a</td>
<td>n/a</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Telecommuting</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Other</td>
<td>4%</td>
<td>6%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>Total Alternative Transportation</td>
<td>88%</td>
<td>92%</td>
<td>92%</td>
<td>91%</td>
</tr>
</tbody>
</table>

18 UCSB Budget and Planning Fall 2008 Housing Survey Results for Primary Commute Mode.
The above graphic indicates that 83% of the campus uses alternative transportation, however to help us identify where additional improvements can be made on behavior patterns, we split up the students from the faculty and staff.
We also separated the data into four categories to get a better sense of behavior patterns and areas for improvements.
Mean of Commute Distance by Sub-population

- Undergraduate...
- Graduate students
- Staff
- Faculty

Median Age of Commuter Fleet

- Undergraduate...
- Graduate students
- Staff
- Faculty

Alternative Transportation: Staff vs. Students

- Faculty/Staff
- Students

Annual Sustainable Transportation Report
Single Occupancy Vehicle: Staff vs. Students

Personally Owned Alternative Fueled Vehicles
AVERAGE VEHICLE RIDERSHIP (AVR) FOR COMMUTERS:

Each spring, the Chancellor’s Sustainability Committee uses the Social Science Survey Center to disseminate a survey to campus participants to collect average vehicle ridership (AVR) for commuters. This information is passed to the Office of the President in our annual reporting.

<table>
<thead>
<tr>
<th></th>
<th>Faculty/Staff</th>
<th>Students</th>
<th>Whole campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average daily trips</td>
<td>1905</td>
<td>8292</td>
<td>10197</td>
</tr>
<tr>
<td>Average vehicles</td>
<td>1279</td>
<td>807</td>
<td>2086</td>
</tr>
<tr>
<td>AVR ratio</td>
<td>1.49</td>
<td>10.28</td>
<td>4.89</td>
</tr>
</tbody>
</table>

ALTERNATIVE FUEL

- Campus owns 354 vehicles, of which 35% are alternatively fueled.
- 16 CNG vehicles, lowering dependency on foreign oil and reducing air pollution.
- 46 low-speed electric vehicles.
- 16 Hybrid vehicles (Toyota Prius: 11; Chevrolet Malibu: 3; Ford Escape: 2).

Transportation Services Vehicle Count by Fuel Type

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-Diesel</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CNG</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diesel</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E85 (Gasoline/Ethanol)</td>
<td>38</td>
<td>17</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Electric</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV (Low speed)</td>
<td>43</td>
<td>41</td>
<td>43</td>
<td>36</td>
<td>35</td>
<td>40</td>
<td>42</td>
<td>41</td>
<td>40</td>
<td>40</td>
<td>29</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flex (Gasoline/Methanol)</td>
<td>2</td>
</tr>
<tr>
<td>Gasoline - sedan</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>14</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>31</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>35</td>
<td>33</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>Gasoline - truck/van</td>
<td>172</td>
<td>170</td>
<td>179</td>
<td>168</td>
<td>170</td>
<td>191</td>
<td>185</td>
<td>196</td>
<td>215</td>
<td>199</td>
<td>189</td>
<td>181</td>
<td>185</td>
<td>183</td>
<td>189</td>
<td>188</td>
</tr>
<tr>
<td>Hybrid</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>299</td>
<td>273</td>
<td>277</td>
<td>257</td>
<td>257</td>
<td>285</td>
<td>276</td>
<td>279</td>
<td>301</td>
<td>285</td>
<td>268</td>
<td>235</td>
<td>233</td>
<td>225</td>
<td>221</td>
<td>218</td>
</tr>
</tbody>
</table>

Notes:
1. Counts are by vehicle model-year, as of August 31 each year.
2. Does not include vehicles located off campus or out of country.
Transportation Services Vehicle Count By Fuel Type

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-Diesel</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CNG</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E85 (Gasoline/Ethanol)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Electric</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV (Low speed)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gasoline - sedan</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gasoline - truck/van</td>
<td>36</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>37</td>
<td>34</td>
<td>35</td>
<td>35</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>32</td>
<td>30</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Hybrid</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>55</td>
<td>56</td>
<td>54</td>
<td>56</td>
<td>60</td>
<td>60</td>
<td>56</td>
<td>59</td>
<td>52</td>
<td>51</td>
<td>50</td>
<td>49</td>
<td>48</td>
<td>47</td>
<td>44</td>
<td>37</td>
<td>35</td>
</tr>
</tbody>
</table>

Notes:
1. Counts are by vehicle model-year, as of August 31 each year.
2. Does not include vehicles located off campus or out of country.
Departmental Vehicles by Fuel Type

![Departmental Vehicles by Fuel Type Graph](image-url)
UCSB Fuel Consumption

- 2009-10 Fuel Consumption (July 1, 2009-June 30, 2010)
- 2010-11 Fuel Consumption (July 1, 2010-June 30, 2011)
- 2011-12 Fuel Consumption (July 1, 2011-June 30, 2012)
- 2012-13 Fuel Consumption (July 1, 2012-June 30, 2013)

Legend:
- CNG (GGE)
- B-Other (B-10 gallons)
- B100 (gallons)
- B20 (gallons)
- B5 (gallons)
- Diesel - no biodiesel (gallons)
- Unleaded-All Other Vehicles (gallons)
- Unleaded-Vanpools (gallons)
TRANSPORTATION ALTERNATIVE PROGRAM

The graph below shows membership in our Transportation Alternatives Program (TAP). The campus has established a target of increasing 5% by 2020 and 35% by 2050. We recently received data going back to 2007 (below) which will allow us to establish our baseline and reassess our targets to see if they need adjustments.

![TAP Membership Counts](image)

GREENHOUSE GAS EMISSIONS FROM COMMUTING AND AIR TRAVEL

As part of UCSB’s greenhouse gas (GHG) emissions reporting, emissions related to commuting and university-funded air travel is tracked. The series of charts below show the Scope 3 commuting emissions, their percent of our total GHG emissions, and the trend of commuting and air travel emissions over the past three years. Our numbers have stayed relatively stable over the past three years, with slight increases for air travel in 2012. Although most of our students and many faculty and staff commute to campus using alternative transportation methods, the campus can do more to decrease its summed emissions. One of the main ways we can do this is by targeting air travel and encouraging faculty and staff to use conference calls or web-based meetings instead of traveling to in-person meetings. The Transportation Subcommittee will be focused on identifying and implementing opportunities to reduce these emissions during the 2013/14 academic year, for example, by establishing a protocol for flexible schedules that permit telecommuting. See the Goals section at the end of this report for more information.
GHG Emissions by Scope

- Scope 1 - Stationary
- Scope 2 - Purchased Electricity
- Scope 3 - Air Travel
- Scope 3 - Commuting
- Scope 1 - Mobile

Preliminary GHG Inventory 2012

- Scope 1 Stationary Combustion (Main Campus): 18,947
- Scope 1 Stationary Combustion (Housing & Aux): 2,954
- Scope 1 Mobile Combustion: 1,142
- Scope 2 Purchased Electricity (Main Campus): 2,6825
- Scope 3 Air Travel: 27,684
- Scope 2 Purchased Electricity (Housing & Aux): 12,33
- Scope 3 Commuting: 12,801
GHG Emissions from Commuting and Air Travel

MT CO$_2$e

Commuting
Air Travel

2010 2011 2012
SHORT TERM GOALS (2013/14):
1. Install one additional level 2 car charging station.
2. Install ten level 1 car charging outlets for faculty and staff.
3. Develop a tracking system for telecommuting and set baseline as well as future targets for this area.
4. Improve methodology for scope 3 emissions tracking.
5. Promote campus-wide site licensing so that individual faculty and staff may use web-based software in place of travel and establish and track the effects of a dedicated, multi-user teleconferencing system for campus use.
6. Develop a calculator for parking permit holders to estimate the carbon offset their monthly commute would generate.
7. Through partnerships, expand alternative fuel infrastructure. Identify UCSB research projects that can complement this project.
8. Review data and establish baselines for mode splits by faculty, staff, and students and fuel consumption by fleet.
9. Develop an anti-idling policy for campus fleet.
10. Expand Clean Cities to county line.
11. Upgrade CNG fueling infrastructure on campus.
12. Work on securing grant funding and funding strategies to encourage departments to utilize Alternative Fuel Vehicles.

MID TERM GOALS (2014‐2020):
1. Decrease single vehicle ridership by faculty and staff by 5%.
2. Increase TAP participation by 5%.
3. Attain an alternative fuel fleet mix of 85% and a robust multi-fuel infrastructure.
4. Develop planning and funding for a north-south bike path linking the Fairview Plaza – Stowe Park area to campus.
5. Further reduce scope 3 emissions by expanding the use of teleconferencing / web options.
6. Work with the local municipalities, MTD, SBCAG, and the county of Santa Barbara to develop an integrated public transit system.
14. Expand full bus service (until 2am) to San Joaquin and Sierra Madre housing complexes (~1500 new beds).

LONG TERM GOALS (2020‐2050):
1. Decrease single vehicle ridership by faculty and staff by 35%.
2. Further increase TAP participation by 35%.
4. Complete alternative fuel infrastructure and achieve a fleet mix of 85% that uses alternative fuels and over 50% that uses renewable fuels.
III POLICY TEXT
D. Sustainable Transportation

III.D.1. Each campus will develop GHG emission reduction goals for transportation, including the emission categories of fleet, commute, and business travel, and report annually on progress toward achieving the goals.

III.D.2. Campus fleets shall implement practicable and cost-effective measures, including, but not necessarily limited to, the purchase of the cleanest and most efficient vehicles and replacement tires, the use of alternative fuels, and other sustainability measures.

III.D.3. The University will pursue the expansion of Transportation Demand Management (TDM) programs and projects to reduce the environmental impacts from commuting. In conjunction with this effort, campuses will engage in advocacy efforts with local transit districts to improve routes to better serve student and staff ridership.

III.D.4. To the extent practicable, campuses will develop a business case analysis for any proposed parking structure projects.

V. PROCEDURES
D. Sustainable Transportation

V.D.1. With the goal of measuring fuel consumption reductions for their vehicular fleets, campuses will collect and report fuel consumption annually to the Office of the President.

V.D.2. Each campus will implement a pre-tax transit pass program to facilitate the purchase of transit passes by University employees or will establish a universal access transit pass program for employees.

V.D.3. Campuses are encouraged to collect data on Average Vehicle Ridership (AVR) of commuters. AVR is defined as the number of trips to campus divided by the number of automobiles used for those trips (AVR = trips/# automobiles). AVR data may be used to set goals for reduction of fuel consumption, develop maps of distance “zones” surrounding the campus in conjunction with transportation mode split data, and model each zone’s proportionate share of various commuting modes (e.g., percentage of bicycle or single-occupancy vehicle trips within 0-2 miles from the central campus core).

V.D.4. The University has made a written request to major automobile manufacturers, expressing both the University’s commitment to work with industry to provide vehicle and fuel choice and the expectation that industry will provide these choices to the fullest extent possible.

V.D.5. Optional mechanisms for reducing transportation emissions:
 a. Mechanisms for reducing fleet emissions include:
 i. replacing vehicles with low or no emission vehicles
 ii. rightsizing fleets (determining the appropriate fleet size and revising business
practices to reduce need for travel)
iii. reducing fleet fuel consumption
iv. reducing fleet vehicle miles traveled
v. increasing use of fuels with lower GHG emissions.

b. Mechanisms for reducing commute emissions include:
 i. constructing additional on-campus housing
 ii. expanding Transportation Demand Management programs: car share, carpool (rideshare), vanpool, bus pool, campus shuttles, transit, bicycle circulation system, pedestrian circulation system, emergency rides home, telecommuting, flexible schedules, parking management, etc.

c. Mechanisms for reducing business air travel emissions include:
 i. remote conferencing, such as teleconferencing, videoconferencing, and web conferencing.

V.D.6. The University will work with regulatory agencies and other entities (e.g., regional transit agencies and air quality management districts) to speed the development, approval, and implementation of programs and technologies that support the goals of sustainable transportation as related to the increased use of biodiesel or other alternative fuel sources. This includes working with State agencies to facilitate the purchase and use of Low Emission Vehicles (LEV), Zero-Emission Vehicles (ZEV) and alternative fuel vehicles by the campuses and to find solutions for increasing the availability of an affordable supply.

V.D.7. The University will develop a mechanism for ongoing involvement of undergraduate and graduate students in efforts toward achieving sustainable campus transportation. The means may include, but are not limited to, undergraduate and graduate internships and/or scholarships for relevant conference attendance.
SUSTAINABLE PROCUREMENT and USE PRACTICES

The UC Policy & Guidelines on Sustainable Practices establishes environmentally preferable procurement and use practices. UCSB is committed to implementing sustainable procurement and use practices that meet or exceed UC’s goals, working within budgetary, regulatory, and programmatic constraints.

I. RESPONSIBILITIES

The senior associate vice chancellor and associate vice chancellor for Administrative Services are responsible for collaboratively overseeing the implementation of these practices.

II. SCOPE

These goals apply to all procurement and use activity in the categories below.

(Note: this copy only reflects the transportation related section of this policy.)

ALTERNATIVE FUEL/ULTRA EFFICIENT VEHICLES

A. For the purposes of implementing these practices:
Alternative Fuel Vehicles (AFVs) are defined as vehicles that use the following fuel or technology: plug-in hybrid, Compressed Natural Gas (CNG), hydrogen, full-function electric, and Neighborhood Electric Vehicle (NEV). Ultra Efficient Vehicles are vehicles that use hybrid technology or achieve 30 MPG or greater and satisfy the Super Ultra Low Emission Vehicle (SULEV II) standard.

B. 75% of the light-duty university purchases should be alternative fuel and/or ultra efficient vehicles (35.5 MPG to match Corporate Average Fuel Economy CAFE standards) by 2016.

C. Departments planning to purchase or lease vehicles are to consider and balance need, vehicle duty, fuel type, availability, the CO2 impact of the vehicle, the alternative fuel and/or ultra efficient standards, and cost. The vehicle selected for purchase or lease should have the lowest CO2 impact (preferably all-electric), while meeting performance and budgetary constraints.

D. UCSB will routinely assess the need for electric vehicle charging stations on campus and develop strategic plans for their location, including incorporating them into new parking lot construction projects or major parking lot renovations as justified.

VII. RENEWABLE ENERGY

A. UCSB will strive to reduce greenhouse gas emissions:

 To 2000 levels by 2014

 To 1990 levels by 2020

 To achieve climate neutrality as soon as possible after achieving the 2014 and 2020 reduction targets

 (http://www.ucop.edu/ucophome/coordrev/policy/sustainable-practices-policy.pdf)
BICYCLE PATHS AND PARKING AREAS

OVERVIEW

The bicycle system at UCSB is a primary element of the campus transportation network, serving over 12,000 students, academic, and staff employees daily. The unique pattern of separate bicycle paths was developed and funded during the intensive capital construction era of the 1960's. That plan integrated a system of paths with grade separations and roundabouts that separate motorists and pedestrians from bicyclists. UCSB is committed to continue its leadership role in providing bicycle paths and parking areas for its cyclists, working within budgetary, regulatory, safety, and programmatic constraints, for a more sustainable society.

I. RESPONSIBILITIES

The senior associate vice chancellor and associate vice chancellor for Administrative Services are responsible for collaboratively overseeing the implementation of these practices.

II. SCOPE

These standard practices apply to all construction with project approval after June 30, 2012, on University owned or leased property or third party lease-backs, including all new buildings and all renovations and modifications with a total project cost of $5 million or more.

III. STANDARD PRACTICES
UCSB is committed to providing an infrastructure that supports and encourages bicycling as an alternative mode of transportation to and around campus. As a standard practice and working within budgetary, regulatory, safety, and programmatic constraints, construction with project approval after June 30, 2012, on University owned or leased property or third party lease-backs, including all new buildings and all renovations and modifications with a total project cost of $5 million or more, should help provide:

A. Bicycle parking areas associated with the building’s use. Bicycle parking areas should be:

1. Designed with adequate capacity and bicycle racks, providing bicycle parking for 25% of the building occupants, including academic and staff employees and students, plus a minimum of 60% of the classroom capacity. If an increase in demand for bicycle parking is identified during site programming, the parking capacity should be commensurately increased.

2. Designed to provide 5% of the building occupants with secured bicycle parking (lockers or other dedicated space). Dedicated space may be within the building and be managed by a building’s designated representative. Exterior lockers shall be managed by the UCSB Transportation Alternatives Program. Shared, multi-building, solutions are encouraged.

3. Visible from the building’s primary entry or have signage that directs cyclists to the parking area.

4. Defined clearly by a stable surface (permeable and non-slip surface) which is easily maintained, durable, and includes landscaped borders to improve their appearance and reduce visual impacts. Whenever feasible, a tree canopy should be included or retained to reduce the heat gain.

5. Lit adequately.

6. Completed and useable at the time of the building’s opening.

1 Bicycle parking ratios may be periodically refined based on bicycle use statistics, surveys, and experience.
7. Replaced when a building project displaces an existing bicycle parking area. Alternate bicycle parking should be provided until the replacement parking area is completed.

A. **Bicycle path(s)**, with any needed intersections, should link existing bicycle path(s) to the new bicycle parking area(s). If construction or construction traffic damages bicycle paths, the project should repair or replace the bicycle paths to sustain/improve the bicycle infrastructure in accordance with the campus’s long range plan. When infrastructure projects need to cross a bicycle path, it may be preferable for the work to tunnel under the path rather than divide the bicycle path.

B. **Pedestrian crossings** of bicycle paths (with high volumes of pedestrians and/or bicycles) should include a pedestrian refuge zone with tactile warning markers at walkways and turning refuges and safe dismount zones into bicycle parking areas with high bicycle flow rates.

C. **Shower and changing facilities** should be provided to support bicycle commuting by academic and staff employees and students.
SANTA BARBARA COUNTY AIR POLLUTION DISTRICT
AND
SOUTHERN CALIFORNIA EDISON
COMMEND

The City of Santa Barbara

AS A LEADER IN PLUG-IN ELECTRIC VEHICLE (PEV)
READINESS IN THE CENTRAL COAST

Communities and regions across the nation are working with local utilities to prepare for the
addition of PEVs to the electric grid. Early and thoughtful planning is essential to consumer satisfaction
and ensuring reliable electric service.

The City of Santa Barbara has championed PEV
Readiness with the following exemplary actions that will
serve as examples for other cities in Southern California:

- Implemented a streamlined permitting and inspection
 process to minimize the time required to install
 chargers in commercial and residential applications and
 participated in SCE’s Permit Notification Pilot Program.

- Implemented a public education and outreach program
 by participating in National Plug-In Day and the Green
 Car Show at Earth Day Santa Barbara, utilizing materials
 and websites developed by SCE and others to establish
 a community PEV education program, supporting
 Community Environmental Council’s Plug-In Santa
 Barbara and various PEV workshops.

- Actively participating and supporting regional public
 infrastructure planning with Plug In Central Coast,
 Community Environmental Council, Santa Barbara
 County Air Pollution Control District, Central Coast Clean
 Cities Coalition, University of California Santa Barbara,
 Santa Barbara County Association of Governments, PEV
 Collaborative, and the California Center for Sustainable
 Energy among others.

- Utilizing PEVs in the city’s fleet, which are some of
 the most popular and used vehicles, allowing many
 employees to experience the technology.

- Supporting the community’s needs for publicly
 accessible PEV charging stations by installing charging
 units, and posting charging station locations on their
 website.
Certificate of Special Congressional Recognition

Presented to
Transportation Services
University of California, Santa Barbara

in recognition of outstanding and invaluable service to the community.

February 13, 2013

[Signature]
Member of Congress
Appendix E

CALIFORNIA LEGISLATURE

Assembly

CERTIFICATE OF RECOGNITION

Presented to

Transportation Services
University of California Santa Barbara

Special recognition, heartiest congratulations and commendations are conveyed
for your commitment to preserving our resources and our environment, your
dedication to our small business community, and upon being certified as a

Santa Barbara County
Green Business

February 23, 2013
Pavilion, California

ASSEMBLY MEMBER DAS WILLIAMS
CALIFORNIA STATE LEGISLATURE
STATE OF CALIFORNIA

Senate

CERTIFICATE OF RECOGNITION

Presented to

Transportation Services at UC Santa Barbara

In Honor of

Your leadership and commitment to develop, maintain, and promote sustainable business practices, and upon being honored as a Green Business of Santa Barbara County provided by the

Green Business Program of Santa Barbara County

February 13, 2013

[Signature]
SENATOR BANKHEAD-JACKSON
40TH SENATE DISTRICT

UCSB Sustainability
Annual Sustainable Transportation Report